Tetrahedron Letters No.2, pp. 169-171, 1967. Pergamon Press Ltd. Printed in Great Britain.

SYNTHESIS AND REARRANGEMENT OF TRICYCLO[4.3.2.0^{1,6}]UNDEC-10-EN-2-ONE


Robert L. Cargill and James W. Crawford¹

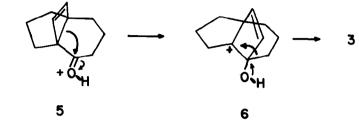
Department of Chemistry University of South Carolina Columbia, South Carolina 29208

(Received 3 October 1966; in revised form 7 November 1966)

In previous publications^{2,3} we have described the synthesis of tricyclo[m.n.2.0^{1,m+2}]- ketones. We now report the synthesis of tricyclo-[$4.3.2.0^{1,6}$]undec-10-en-2-one (2) and its rearrangement to tricyclo[$3.3.3.0^{1,5}$]-undec-2-en-4-one (3).

When the synthesis of 2 was carried out in the manner previously described for the synthesis of tricyclo[$3.3.2.0^{1,5}$]dec-9-en-2-one,³ a tricyclic enone was isolated which has the correct empirical formula,⁴ but whose ultraviolet, infrared, and nuclear magnetic resonance spectra were inconsistent with the formulation of 2 as the reaction product. Formula 3 did, however, appear to fit the spectral data. Ketone 2 was therefore prepared by a slightly modified procedure. Subsequent treatment of 2 with acid caused rearrangement to ketone 3, identical with the product obtained via the direct procedure.

Photochemical cycloaddition of 1,2-dichloroethylene (<u>cis</u>, or <u>trans</u>) to bicyclo[4.3.0]non-1(6)-en-2-one $(1)^5$ proceeded smoothly to give a mixture of tricyclic, dichloro ketones. Immediate dechlorination of the crude product with sodium in liquid ammonia yielded a mixture of the desired ketone 2 and the corresponding alcohol(s). The ketone could be isolated by alumina chromatography, or alternatively, the entire mixture could be treated with chromic acid to give 2 in 31 - 35% yield from 1.


The spectral data: λ_{max} 296 mµ (ε 85), interacting $\beta_{,\gamma}$ -unsaturated ketone; $\tilde{\nu}_{max}$ 1700 cm⁻¹, cyclohexanone; and an AB quartet centered at 5.97 ppm, $\delta_{\rm A} - \delta_{\rm B} = 10.5$ cps and $J_{\rm AB} = 2.8$ cps, nonequivalent vinyl protons on a cyclobutene ring, along with the mass spectrum⁴ and the mode of formation establish structure 2.

Since in the previous attempt to prepare 2, acid catalyzed hydrolysis of the corresponding ethylene ketal resulted in a rearranged product, ketone 2 was subjected to the action of <u>p</u>-toluenesulfonic acid in boiling benzene. Rearrangement was complete in less than one hour, and a single product (3) was formed. Pure 3, obtained by preparative gas chromatography, has λ_{max} 228 m_µ (ϵ 7200) and $\tilde{\nu}_{max}$ 1710 cm⁻¹, conjugated cyclopentenone; and doublets at 5.91 and 7.33 ppm, J_{AX} = 6 cps, α - and β -protons of cyclopentenone, respectively. The remaining protons gave rise to a complex multiplet between 1.3 and 2.1 ppm. Final proof of structure was provided by oxidation of ketone 3 to diacid 4, previously obtained by oxidation of tricyclo[3.3.2.0]dec-9-en.⁶

3

The rearrangement of ketone $\frac{2}{2}$ to $\frac{3}{2}$ must involve vinyl migration in the protonated ketone $\frac{5}{2}$ to produce the ion $\frac{6}{2}$, a type already known to be highly stabilized .⁷ Further bond migration provides the observed ketone $\frac{3}{2}$.

Ketone 3 provides the first example of the tricyclo[3.3.3.0^{1,5}]undecane ring system. A detailed account of the chemistry of ketones 2 and 3, as well as of other tricyclic ketones, will be described in a later paper.

<u>Acknowledgment</u>. We thank the National Science Foundation for support of this research, for a traineeship to J.W.C., and for an institutional grant toward the purchase of a Varian A-60 nmr spectrometer.

References

- 1) National Science Foundation Trainee.
- R. L. Cargill, M. E. Beckham, A. E. Siebert, and J. Dorn, <u>J. Org. Chem.</u>, <u>30</u>, 3647 (1965).
- R. L. Cargill, J. R. Damewood, and M. M. Cooper, <u>J. Amer. Chem. Soc.</u>, <u>88</u>, 1330 (1966).
- 4) The mass spectra of ketones 2 and 3 are consistent with the assigned structures. We are pleased to thank Prof. A. L. Burlingame and Dr. H. K. Schnoes for the mass spectra.
- 5) R. K. Hill and R. T. Conley, <u>J. Amer. Chem. Soc.</u>, <u>82</u>, 645 (1960).
- J. R. Damewood, Unpublished Results. The two acids were compared as the dimethyl esters.
- 7) S. Winstein and M. Shatavsky, J. Amer. Chem. Soc., 78, 592 (1956).